ZEISS Riflescopes Victory, Classic, Duralyt
ZEINX
Reticles and Subtensions

	Imageplane	Illuminated	Nonilluminated
Victory Diarange			
2.5-10 x 50	2	43-60-66	
3-12 x 56	2	43-60-66	
Victory FL Diavari			
4-16 x 50	2	60-78	20-78
6-24×56	2	43-60-78	20-43-78
6-24×72	2	43-60	
VICTORY HT			
1.1-4 x 24	2	54-60	
1.5-6 x 42	2	60	
2.5-10 x 50	2	60-76	
3-12 $\times 56$	2	60-76	
Victory Varipoint iC			
1.1-4 x 24 iC	1+2	0-60	
1.5-6 x 42 iC	1+2	60	
2.5-10 x 50 ic	1+2	60-69	
3-12 $\times 56$ iC	1+2	60-69	
Victory Diavari			
1.5-6 42	1		4
2.5-10 x 50	1		4
3-12 x 56	1		4
3-12 $\times 56$	2		20

Overview:
All Models and Reticles

	Image- plane	Illuminated	Non- illuminated
Classic Diavari			4
$\mathbf{1 . 5 - 6 \times 4 2}$	1		4
$\mathbf{2 . 5 - 1 0 \times 5 0}$	1	$40-60$	4
$\mathbf{3 - 1 2 \times 5 6}$	1	$40-60$	
Classic Diatal		$40-60$	
$\mathbf{7 \times 5 0}$	$40-60$	6	
$\mathbf{8 \times 5 6}$		60	6
Duralyt	2	60	6
$\mathbf{1 . 2 - 5 \times 3 6}$	2	60	
$\mathbf{2 - 8 \times 4 2}$	2		
$\mathbf{3 - 1 2 \times 5 0}$			

Victory Diarange: 60-66
ZDINS

We make it visible.

Reticle 60

Reticle 66

Subtensions with different magnifications can be calculated as

$$
S(M)=S \times 6 / M
$$

Diameter dot at 100 m
$=18 \mathrm{~cm} /$ magnification

```
Victroy Diarange
2.5-10 x 50 T*
3-12\times56 T*
    2. Image plane
```

Subtensions S with $\mathrm{M}=\mathbf{6 x}$ in cm at 100 m :

	a	b	c	d
$\mathbf{6 0}$	140	7.5	1	3
$\mathbf{6 6}$	140	7.5	1	10

Example:

Diameter red dot with 12 x :
$1.5 \mathrm{~cm} / 100 \mathrm{~m}$

Victory Diarange: 43

```
Victory Diarange
2.5-10\times50 T*
    3-12\times56 T*
    2. Image plane
```

Subtensions with different magnifications can be calculated as

$$
S(M)=S \times 10 / M
$$

Double magnification $=$ half the subtensions !

$$
\begin{aligned}
& \text { Example } \\
& \text { Thickness bars with } M=5 \mathrm{x} \text { : } \\
& S(5)=4 \mathrm{~cm} \times 10 / 5=8 \mathrm{~cm}
\end{aligned}
$$

Victory FL Diavari: 60

Subtensions S with M = 12x

in cm at 100 m with:
Space between bars (a): 70 cm
Thick bars (b):
3.75 cm

Thin lines (c):
0,5 cm
Diameter dot (d):
1.5 cm

Subtensions with different magnifications can be calculated as

$$
S(M)=S \times 12 / M
$$

Diameter dot at 100 m

 $=18 \mathrm{~cm} /$ magnification[^0]```
Victory FL Diavari
6-24\times56 T* FL
6-24 x 72 T* FL
 2. Image plane
```

Subtensions with different magnifications can be calculated as

$$
S(M)=S \times 12 / M
$$

Double magnification = half the subtensions !

```
Example
Thickness bars with M = 6 x
S (6) = 4 cm x 12 / 6 = 8 cm
```



With or without illumination

Victory FL Diavari: 20 (Z-Plex)

```
Victory FL Diavari
4-16\times50 T* FL
6-24 x 56 T *FL
 2. Image plane
```



Reticle 20
(Z-Plex)

## Subtenstions S

in cm at 100 m with
M = 12 x :
Center cross hair:

$$
0.5 \mathrm{~cm}
$$

Thick bars:
Space between bars:
35 cm

Subtensions at different magnifications can be calculated as (cm at 100 m ):

$$
S(M)=S \times 12 / M
$$

Double magnification
= half the subtensions!


## Rapid Z System - Basic Idea

The fastest solution for remaining on target at long range and reliably incorporating the fall of shot directly based on the ballistic reticle.

- No calculation, click counting or estimated aiming above the target!
- Adjustment to the ballistics via the scaling on the ballistic reticle, i.e. via the magnification.

1. Measure or estimate range.
2. Remain on target with the corresponding distance line!

Rapid Z5 with
100 m Distance •
400 m Distance •


## Rapid Z System - Select the Right Magnification

For an accurate calculation of the right magnification please use the Rapid-Z ballistik calculator on the Carl Zeiss Sports Optics homepage. If there is no access to that you can find out the magnification in the following way:
I. The ballistic data of your ammunition (or testshots) show the bullet drop from 100 m (target) and 300 m (= BD13).
II. There is a reference magnification $\mathrm{M}_{\mathrm{R}}$ for every riflescope with Rapid-Z:
$M_{R}=10 x$ for 2.5-10x50 (Rapid-Z5) (This magnifications is the right for any ammunition with $B D 13=33 \mathrm{~cm}$,
e.g. 300 WinMag Blaser CDP)
$M_{R}=12 x$ for 3-12x56 (Rapid-Z5)
$M_{R}=16 x$ for 4-16x50 FL (Rapid-Z7)
$M_{R}=18 \times$ for $6-24 \times 56$ FL (Rapid-Z7)
III. The right magnification for this used ammunition can than be calculated as:


If the point of impact with this selected magnifications is too deep: reduce the magnification. If the point of impact is too high: increase the magnification.
IV. The sight in distance (with central reticle‘s cross) has to be

100 m with Rapid-Z5 200 m with Rapid-Z7

## Rapid-Z Detailed Subtensions



We make it visible.

Bars: 2 cm
Lines: 0,5 cm
Opening: 70 cm

## Rapid Z7:

Subtensions are for following riflescopes and magnification:

| $6-24 \times 56 F L$ | $18 \times$ |
| :--- | :--- |
| $4-16 \times 50$ FL | $16 \times$ |

## Rapid-Z5:

Subtensions (until line 5) are for following riflescopes and magnification:

| $2.5-10 \times 50$ | $10 \times$ |
| :--- | ---: |
| $3-12 \times 56$ | $12 \times$ |
|  | Page 11 |

## VICTORY HT: 54



Subtensions in cm at 100 m :

|  | $\mathbf{1 . 1} \mathbf{x}$ | $\mathbf{4 ~ x}$ |
| :--- | :---: | :---: |
| Diameter dot | 6 | 1,6 |
| Line | 13 | 3,6 |
| Vertical line | 200 | 55 |

Diameter dot at 100 m $=6.6 \mathrm{~cm} /$ magnification

Reticle 54

## VICTORY HT

1.1-4 x 24
$1.5-6 \times 42$
2.5-10 x 50

3-12 x 56
2. Image plane


Subtensions S with $\mathrm{M}=6 \mathrm{x}$
in cm at 100 m :

| Opening: | 140 cm |
| :--- | :--- |
| Bars: | 7.2 cm |
| Lines: | 1.6 cm |
| Diameter dot | 1.1 cm |

Subtensions with other magnifications can be calculated:

$$
S(M)=S \times 6 / M
$$

Diameter dot at 100 m $=6.6 \mathrm{~cm} /$ magnification

[^1]
## VICTORY HT: 76 (Rapid Z5)



Victory Varipoint iC: 0-60


Reticle 0
Dot in 2. image plane

We make it visible.


Subtensions in cm at 100 m :

| Victory Varipoint iC | $1.1-4 \times 24$ |  |  | $\begin{gathered} 1.5-6 \times 42 \\ 2.5-10 \times 42 \\ 2.5-10 \times 50 \\ 3-12 \times 56 \end{gathered}$ |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 60 | 210 | 11,25 | 3 | 140 | 7,5 | 2 |

Victory Varipoint iC: 69

## Reticle V69

## Victory Varipoint iC

$$
\begin{gathered}
2.5-10 \times 50 \mathrm{~T}^{*} \\
3-12 \times 56 \mathrm{~T}^{*}
\end{gathered}
$$

Lines and cross in 1. image plane Dot in 2. image plane
 plane. and night.


Reticle with cross and dot, for day and night, in 1. and 2. image

Bright red dot for daylight, fine red dot or cross for twilight

| Victory <br> Varipoint |  | $2.5-10 \times 50$ <br> $3-12 \times 56$ |  |  |
| :---: | :---: | :---: | :---: | :---: |
| 69 | 140 | 7,5 | 1 | 15 |

Subtensions
in cm at 100 m :

## Diameter red dot at 100 m $=22 \mathrm{~cm} /$ magnification

Victory Diavari: 4


Reticle 4

> Victory Diavari
> $1.5-6 \times 42 \mathrm{~T}^{*}$
> $2.5-10 \times 50 \mathrm{~T}^{*}$ $3-12 \times 56 \mathrm{~T}^{*}$

Subtensions in cm at 100 m :

|  | a | $b$ | $c$ |
| :---: | :---: | :---: | :---: |
| $\mathbf{4}$ | 70 | 15 | 1,5 |

Victory Diavari: 20 (Z-Plex)


Reticle 20
(Z-Plex)

Subtensions S
in cm at 100 m with
M = 12 x :
$\begin{array}{ll}\text { Center cross hair: } & 0,5 \mathrm{~cm} \\ \text { Thick bars: } & 3 \mathrm{~cm} \\ \text { Between bars: } & 35 \mathrm{~cm}\end{array}$

Subtensions at different magnifications
can be calculated as
(cm at 100 m ):

$$
S(M)=S \times 12 / M
$$

Double magnification
$=$ half the subtensions!

Classic Diavari: 4-40-60
ZEINS

We make it visible.


Reticle 4


|  | a | b | c | d |
| :---: | :---: | :---: | :---: | :---: |
| 40 |  |  |  |  |
| 44 |  |  |  |  |
| 60 | 15 | 1,5 | 3 |  |
| 70 | 15 | 1,5 | 10 |  |
| 140 | 7,5 | 1,5 | 3 |  |
| 140 | 7,5 | 1,5 | 10 |  |

Subtensions in cm at 100 m .

## Classic Diatal: 40-60



## Classic Diatal <br> $7 \times 50$ T* $8 \times 56$ T*

|  | a | b | c | d |
| :---: | :---: | :---: | :---: | :---: |
| 40 | 70 | 15 | 1,5 | 3 |
| 60 | 140 | 7,5 | 1,5 | 3 |

Subtensions in cm at 100 m

## Duralyt

1.2-5 x 36

2-8 x 42
3-12 x 50
2. Image plane


Subtension $S$ with $6 x$
in cm at 100 m :
Crosshair thickness: 1.6 cm
Diameter red dot: 1.6 cm
Post width: $\quad 7.5 \mathrm{~cm}$
Post opening: 140 cm
Subtension at other magnification levels ( $M$ ) can be determined as:

$$
S(M)=S \times 6 / M
$$

Diameter dot at 100 m $=9.6 \mathrm{~cm} /$ magnification

## Example:

Diameter red dot with 12 x :
$0.8 \mathrm{~cm} / 100 \mathrm{~m}$

Duralyt: 6


Different magnification levels result in the following subtension (in cm at 100 m ):

|  | $\mathbf{1 . 2 ~ x}$ | $\mathbf{6 x}$ | $\mathbf{1 2 ~ x}$ |
| :--- | :---: | :---: | :---: |
| Crosshair thickness | 5 | 1 | 0,5 |
| Bar thickness | 37,5 | 7,5 | 3,75 |
| Post opening | 700 | 140 | 70 |


[^0]:    Example:
    Diameter red dot with 24 x :
    0.75 cm / 100 m

[^1]:    Example:
    Diameter dot with 12 x
    $=0.55 \mathrm{~cm} / 100 \mathrm{~m}$

